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Abstract The “reversible ratchet” model of interacting Brownian motors, introduced by
us earlier, is investigated using a one-site approximation of a mean-field type. We confirm
the effect of enhanced efficiency due to repulsive interaction and we provide arguments
suggesting that the enhancement is of energetic, rather than entropic, origin. We also check
the validity of the fluctuation theorem for stationary particle current.

Keywords Molecular motors · Fluctuation theorem · Exclusion process

1 Introduction

Brownian motors are one of paradigmatic realisations of driven non-equilibrium systems
[1–13]. Besides the obvious relevance of their study for understanding the function of pro-
tein molecular motors [14–19], and practical realisations in nanotechnologies [20–22], they
provide also an invaluable testing ground for fundamental questions of transport phenomena
far from equilibrium [23].

In this paper, we focus our attention on two aspects of Brownian motors. The first one
is their energetic efficiency, as expressed by usual thermodynamic definition η = W/Ein,
where W is work performed and Ein energy injected into the system from the outside. Other
measures of efficiency, either those taking into account viscous resistance from the environ-
ment [24], those explicitly accounting for the consumption of chemical energy [25], or yet
another ones, based on the magnitude of the stopping force [19], will be disregarded here.
There are many studies investigating the efficiency of canonical Brownian motors realised
as either flashing or rocking ratchets [26–34]. It turns out that the efficiency is rather low [8,
29], contrary to the experimental data on motor proteins, e.g. the kinesin [14, 19]. One is
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lead to the natural conclusion that the usual ratchet mechanism with diffusion as principal
driving force is not an appropriate model for biological motors.

Indeed, biologists distinguish between ratchet and power-stroke mechanisms for molec-
ular motors [35], the later relying rather on quasi-deterministic downhill motion in a free-
energy landscape which evolves in time. Thus, the particles move as if trapped in a travelling
potential wave. This idea was elaborated in a toy model of “reversible ratchet” [32, 36, 37],
showing much higher efficiency, close to the biologically relevant figures. We should note
that high efficiency was also characteristic of the models of Refs. [25, 38].

The second point of interest will be the mutual repulsive interaction of several motors
moving along the same track. Such situation is quite common in biological context. It was
found [39–41] that in closed compartments, like in tubes representing the axons of neurons,
the mutual steric (hard-core) repulsion of motors plays substantial role. The same holds
for the movement of motors in complex arrays of cytoskeletal filaments [42]. Along the
microtubules, kinesin molecules typically carry the cargo in groups [10, 11, 19]. If two types
of motors move along the track in opposite directions, dynamical phase transitions may
occur [43]. In gene transcription and translation large number of motor proteins move along
the same track [44, 45], forming so-called “Christmas tree” structures. Strong interaction
of hard-core type between individual motors plays decisive role in such situations. It was
investigated on a model level for the transport of kinesin [46], ribosomes [47], and RNA
polymerase [48]. Since the first investigations [39] these studies relied on ample literature
on asymmetric exclusion processes [23, 49–51] and traffic models [52].

Including explicitly the ratchet mechanism of driven diffusion of hard-rod particles leads
to very intricate effects [53–55], if the particle size and the ratchet periodicity are incom-
mensurate. The collective movement of coupled Brownian motors was studied [56–58] and
in some cases they were found to induce non-zero current and spontaneous oscillations even
in mirror symmetric potential due to dynamical symmetry breaking [25, 59].

In our previous paper [60] we introduced a modified version of the “reversible ratchet”.
Spatial coordinate is discretised, as in e.g. [6]. Tunable on-site repulsion between particles
is introduced. We found that not too strong interaction leads to increase of efficiency. The
effect can be traced to decrease of the energy injected into the system, due to correlations
between particle positions. While in [60] we relied on numerical simulations, in this paper
we introduce an approximation which helps to study the system analytically. In essence,
our approximation is a mean-field scheme. It is known that for the ASEP model mean-field
approximation gives exactly some of the stationary-state averages, notably the average total
current, which depends on density as Jtot = ρ(1 − ρ). We shall see that the ratchet cur-
rent differs from this formula substantially. Let us also mention the mean-field treatment of
motors which are coupled via a rigid backbone, as in the studies of spontaneous muscle os-
cillations [25, 59] or recently in [61]. In these works, the interaction of motors is effectively
of infinite-range, due to the backbone, thus the mean-field treatment is close to be exact.
Our case is different, because the interaction is on-site only. Therefore, we can expect only
approximative results.

2 Interacting Particles in Reversible Ratchet

To investigate the effects of interaction on an energetic efficiency of motors, we chose a
very schematic model, keeping deliberately only those ingredients which are necessary to
show the effect. We realise that the cost to be paid for the schematicity is substantial loss of
contact with the biological reality. On the other hand, we believe that the effects investigated
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here are generic enough to be of value also for realistic modelling of molecular motors. We
shall return to the important differences between our ratchet model and biological reality at
appropriate places.

2.1 Time-Dependent Potential

Let us have N particles occupying, at time τ , integer positions Xτ = {xiτ }N
i=1, on the seg-

ment of length L, with periodic boundary conditions. The particles are subject to a periodic
driving force, to the external load and they interact with other particles. Thus, the j -th par-
ticle moves in the potential

Uj(x, τ ) = V (x, τ ) + xF + gnj (x, τ ). (1)

The first term is spatio-temporally periodic external driving potential V (x, τ ) =
Vx mod 3(τ ) = V (x, τ + 4t). We chose the smallest non-trivial spatial period 3 for conve-
nience, although larger periods may offer further interesting effects. The choice of period
3 is dictated by simplicity of the calculation. On the other hand, it was observed that the
movement of myosin V molecules proceeds in three substeps within single period [62]. In
reality, however, the substeps have unequal length, contrary to our model.

The time-dependent potential is periodic in space and time. It evolves in a four-stroke
cycle. The full time period 4t is composed of four strokes of equal length t which we shall
call quarter-period throughout this paper. In reality, the typical time scale would be given by
the rate-limiting step in the mechanochemical cycle of the motor. (In the case of myosin V
it is ADP release.) The spatial period is 3, thus the potential has three independent values,
Va(τ ), a = 0,1,2, with Va(τ ) = Va(τ − 4t). We fix V0(τ ) = 0 and let the other two evolve
in a step-wise pattern

V1(τ ) = V2(τ + t) =

⎧
⎪⎪⎨

⎪⎪⎩

1 for 0 < τ < t,

1 + 2(1 − �τ�/t) for t < τ < 2t,

−1 for 2t < τ < 3t,

−1 − 2(1 − �τ�/t) for 3t < τ < 4t

(2)

where �τ� stands for integer part of τ . We can see that the potential V2 is delayed with
respect to V1 by one quarter period. This implies that the potential V (x, τ ) forms a kind of
a “travelling wave” which induces the preferential direction of the diffusive movement of
particles. If the delay between V1 and V2 was reversed, the direction of the “travelling wave”
would be reversed too and so would be the average current. Hence the name “reversible
ratchet” for this kind of setup. It is consistent with the power-stroke mechanism [35] which
is responsible for most of the movement of motor proteins.

Admittedly unrealistic feature is the synchronous change of potential V (x, τ ) at all posi-
tions x, which is not correlated with the actual positions of the particles. In fact, each motor
particle can be in a different stage of the motor cycle. Here we assume that all of them
change their state in parallel, in conformity with the “reversible ratchet” model of [32, 36,
37]. We also do not take into account the fact that the internal state of the motor is strongly
correlated with its position in space.

The second part of the potential in (1) comes from the uniform and static external force
F against which a useful work is done. This is the load imposed on the motor.

Finally, the third term in (1) describes the repulsive on-site interaction between particles,
with strength g ≥ 0. The j -th particle feels the presence of the other particles, so we denote
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nj (x, τ ) = ∑N

i=1 δ(i − j)δ(x − xiτ ) the number of these particles on site x at time τ . (We
use δ(a − b) for Kronecker delta and δ(a − b) = 1 − δ(a − b).)

Contrary to the models of [46–48], we allow more particles on a site, thus deviating
from the principles of exclusion processes. Our motivation for this choice is the movement
of hard-core particles in narrow two- or three-dimensional channels, where the particles
may bypass each other and thus pose obstacles of finite strength, rather than impenetrable
barriers to each other. Similar situation may occur also in biological systems, if the motors
move along closely spaced parallel tracks, or perhaps even on the same fibre, as may be the
case of myosin molecules on an actin filament. The true interaction in these cases is hard-
core repulsion, but spatial constraint to the movement of other particles may be effectively
considered as finite repulsive potential. Certainly, we recover exclusion-process behaviour
in the limit g → ∞.

2.2 Movement of Particles

The configuration Xτ evolves in discrete time. In each discrete tick only one particle (at
most) is allowed to move. Since we shall measure the average current, i.e. average distance
travelled in a unit of time, per particle, the time should be rescaled appropriately with the
number of particles N . This leads to the tick length equal to 1/N . Therefore, the discrete
time instants are τ = 0,1/N,2/N, . . . .

The evolution is a Markov process governed by a master equation. In order to write
the master equation in a compact way, let us denote X(i+) and X(i−) the configurations
which differ from the configuration X only by the shift of i-th particle one step right-
wards and leftwards, respectively. We can write explicitly for these shifted configurations
xj (i±) = (xi ±1)δ(i − j)+xj δ(i − j). As we allow only one particle hopping to its nearest
neighbour site, the two configurations X(i±) are the only states to which the system may
evolve from the configuration X. Conversely, these two are also the only ones from which
the configuration X can be reached.

Then, the master equation can be written as

P (X, τ + 1/N) = 1

N

N∑

i=1

∑

σ=±

(
W(X(iσ ) → X,τ)P (X(iσ ), τ )

− W(X → X(iσ ), τ )P (X, τ)
)
. (3)

The transition probabilities W(X(iσ ) → X,τ) must satisfy the detailed balance condition.
There are many possible choices which obey this requirement. We found most convenient
the following one

W(X → X(j±), τ ) = 1

2

[
1 + exp

(
β(Uj (xjτ ± 1, τ ) − Uj(xjτ , τ ))

)]−1
. (4)

For convenience, we define the temperature T so that β = 270/T .
Somewhat awkward definition of system dynamics was chosen so that it exactly repro-

duces the algorithm of numerical simulations of Ref. [60]. Indeed, in plain words we can
say that at each integer time step we select N times a particle randomly and let it make one
step leftwards or rightwards in the potential (1). Therefore, on average each particle moves
once per unit time, but for large N the probability that it moves exactly k times is given by
the Poisson distribution P (k) = 1/(ek!).
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2.3 Mapping on Time-Independent Potential Problem

Without interaction, g = 0, the movement of N → ∞ particles in time-dependent potential
can be formulated as one-particle problem with time-independent transition probabilities
by the usual “stroboscopic” trick. First, it is sufficient to work at integer times τ . We also
exploit the spatial periodicity of the potential V (x), with period 3, and define the vector of
probabilities with 12t components

P R(x + 3τ, τ ′) =
L/3−1∑

x′=0

P (x + 3x ′, τ ′ + τ) (5)

where now τ ′ is an integer multiple of 4t , x ∈ {0,1,2}, and τ = 0,1, . . . ,4t −1. Its evolution
is described by the master equation

P R(τ ′ + 4t) = WRP R(τ ′) (6)

and the matrix WR is composed of 3 × 3 blocks

WR =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0 . . . 0 W(4t − 1)

W(0) 0 . . . 0 0
0 W(1) . . . 0
...

...

0 . . . W(4t − 2) 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (7)

Each non-zero block W(τ ′) corresponds to movement of one particle in time-independent
potential. One hop of the particle in such potential is governed by the probabilities (4) which
are arranged in 3 × 3 matrix

W1(τ ) =
⎛

⎝
1 − W1(0+, τ ) − W1(0−, τ ) W1(1−, τ ) W1(2+, τ )

W1(0+, τ ) 1 − W1(1+, τ ) − W1(1−, τ ) W1(2−, τ )

W1(0−, τ ) W1(1+, τ ) 1 − W1(2+, τ ) − W1(2−, τ )

⎞

⎠

(8)

where, in the non-interacting case, the transition probabilities (4) simplify to

W1(x±, τ ) = 1

2

[
1 + exp

(
β(Vx±1 mod 3(τ ) − Vx(τ ) ± F)

)]−1
. (9)

As the actual number of steps the particle makes is Poisson-distributed with average 1, we
have W(τ) = ∑∞

k=0
1

ek! (W1(τ ))k = exp(W1(τ ) − 1).

2.4 Quantities of Interest

The stationary state P R
stac of the process (6) then yields the average stationary current

J =
2∑

x=0

2∑

y=0

4t−1∑

τ=0

(
W1(y+, τ ) − W1(y−, τ )

)

×
[exp(W1(τ ) − 1) − 1

W1(τ ) − 1

]

yx
P R

stac(x + 3τ). (10)
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The middle factor containing the exponential of W1 − 1 stems from summing over contri-
butions from particle making k steps, for all positive k with Poisson distribution.

Similarly, the input energy is

Ein =
2∑

x=0

4t−1∑

τ=0

(
Vx(τ ) − Vx(τ − 1)

)
P R

stac(x + 3τ) (11)

and hence the efficiency η = JF/Ein.

3 Mean-Field Approximation

When the interaction is switched on, we can still define the one-particle probability vector
as in (5), but it is not any more subject to the Markov process governed by a master equation
like (6). However, for small enough g we can expect that the interaction-induced correlations
will be weak and we can proceed by an effective one-particle approximation. We shall retain
all machinery of the “stroboscopic” approach exposed in the last section, i.e. the equations
(6) to (11), except the expression (9) which will be replaced by an approximative one.

3.1 Mean-Field One

There are several ways how to implement a one-site, or mean-field approximation. The first
one, investigated in part already in our previous work [60], neglects totally the fluctuations
in the particle density. The term gnj (x, τ ) in (1) was replaced by gρP R(x + 3τ). (We as-
sume normalisation

∑2
x=0 P R(x + 3τ) = 3 for all τ .) If there are only few particles around,

movements of any single particle bring about big relative density fluctuations. Therefore,
the approximation should be appropriate at high particle densities ρ = N/L, while keeping
the product gρ small. Indeed, this expectation was confirmed in [60]. We shall denote this
approximation by the acronym MF1 and it amounts taking

W1(x±, τ ) = 1

2

{
1 + exp

[
β
(
Vx±1mod3(τ ) − Vx(τ ) ± F

+ gρ
(
P R(x ± 1 mod 3 + 3τ) − P R(x + 3τ)

))]}−1
(12)

in place of the expression (9). Note that this expression depends on interaction and density
only through the product gρ. This is in contrast with simulations, unless gρ → 0, as we have
shown in [60].

3.2 Mean-Field Two

One can partially take into account the one-site density fluctuations, while keeping different
sites uncorrelated. Here we have to make a hypothesis about the probability distribution
P1(n;x, τ ) of number of particles at site x in time τ . If we had the stationary solution of (6)
at our disposal, we could equate the average number of particles

n(x, τ ) ≡
∑

n

nP1(n;x, τ ) = ρP R
stac(x + 3τ) (13)
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but this is still too little information to infer the distribution. Thus, as the favourite choice,
we assume P1(n;x, τ ) to be a Poisson distribution with average λ(x, τ ) = ρP R

stac(x + 3τ).
Hence, in the approximation we denote MF2 we have, instead of (9), the expression

W1(x±, τ ) = 1

2

∞∑

n=0

∞∑

n′=0

e−λ(x,τ )−λ(x±1mod3,τ ) λ
n(x, τ )λn′

(x ± 1 mod 3, τ )

n!n′!

×
{

1 + exp
[
β
(
Vx±1mod3(τ ) − Vx(τ ) ± F + g(n′ − n)

)]}−1
. (14)

3.3 Mean-Field Three

We can further improve this approximation in two directions. First, we should take into
account the fact that if we calculate the probability of particle hopping from x to x ± 1, the
densities of particles at x and x ± 1 are influenced by the presence of at least one particle
at x. Indeed, this is the particle which will try to hop. We shall see later how this constraint
is implemented in the calculation. This way we partially take into account not only one-site
fluctuations, but also the correlations between neighbour sites.

Second, we can choose more refined assumption on the on-site probability distribution
of particle numbers, replacing the simple-minded Poisson by something better. Indeed, the
Poisson distribution implicitly assumes independence of particles. It the particles repel each
other, the actual distribution for large number of particles must fall lower the Poisson. We
found that the following two-parametric modification of the Poisson distribution gives good
results

P1(n;λ, λ̃) =
⎧
⎨

⎩

0 for n < m,

a for n = m,

b̃λn/n! for n > m

(15)

where the constants a and b are fixed by the normalisation
∑

n P1(n) = 1 and average
∑

n nP1(n) = λ. With this prescription, the average number of particles is λ, but for n > m

the distribution behaves like a Poisson distribution with another parameter λ̃ < λ, taking
into account the repulsion. For the parameter m, we take the smallest non-negative integer
consistent with the obvious requirement P1(n) ≥ 0.

In the prescription (15) we dropped the dependence on space and time. It enters into the
distribution P1(n) through the two parameters λ and λ̃. Let us see now how they are found.

First, we should notice that in calculating the single hop probability W1(x±), we need
separately the distribution P1(n;λ(y), λ̃(y)) of the number of particles at point y = x ± 1 to
which the hop is directed, and the distribution P1(n;λ(x), λ̃(x)) of the number of particles
other than the hopping particle at the point x, from which the hop is performed. Without
interaction, these two distributions are not influenced by the fact that there must be a parti-
cle at the point x. Certainly, this is the particle which is about to hop, so it must be there.
When we switch on the interaction, the things change. It is natural to consider the following
situation. We put an extra fixed particle at site x and calculate the stationary one-particle
probability vector P R

stac|x as before, where the symbol |x we added in the subscript indicates
that the probability is calculated provided that an extra particle is located at x, thus modi-
fying the potential locally. Similarly, we can add two particles at two points x1 and x2 and
again calculate the stationary one-particle probability vector P R

stac|x1x2
. For our purposes it is

enough to suppose that either x1 = x2, i.e. there are two extra particles at the same point, or
|x1 − x2| = 1, i.e. x1 and x2 are neighbours.
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Then, we could calculate the true one-particle probability vector P R
stac, if we knew the

results obtained for P R
stac|x and P R

stac|x1x2
. Indeed in the one-hop probability

W1(x±, τ ) = 1

2

∞∑

n=0

∞∑

n′=0

P1(n;λ(x, τ ), λ̃(x, τ ))P1(n
′;λ(x±, τ ), λ̃(x±, τ ))

×
{

1 + exp
[
β
(
Vx±1mod3(τ ) − Vx(τ ) ± F + g(n′ − n)

)]}−1
(16)

we can choose

λ(x, τ ) = ρP R
stac|x(x + 3τ),

λ(x±, τ ) = ρP R
stac|x(x ± 1 + 3τ).

(17)

For the second parameter of the distribution, we choose

λ̃(x, τ ) = ρP R
stac|xx(x + 3τ),

λ̃(x±, τ ) = ρP R
stac|x(x ± 1 + 3τ)

P R
stac|x±1x±1(x ± 1 + 3τ)

P R
stac|x±1(x ± 1 + 3τ)

.
(18)

This choice takes into account the effect of the reduction of the probability of higher occu-

pation of one site, due to repulsive interaction.

But now the problem of calculating P R
stac is reduced to the problem of obtaining P R

stac|x
and P R

stac|x1x2
. In principle we could continue further this way, adding three, four, etc. extra

particles at various positions and from the known P R
stac|x1x2...xn+1

and P R
stac|x1x2...xn

we can de-

duce the necessary values of λ and λ̃ needed for the calculation of P R
stac|x1x2...xn−1

according to

formulae analogous to (17) and (18). Of course, in practice we must terminate this recursive

chain somewhere. In this work we break the chain just after adding two particles. So, for ex-

ample when we calculate the spatial distribution of particles in presence of one extra particle

at site y, which is P R
stac|y , we use the following parameters in the hopping probability (16)

λ(x, τ ) = P R
stac|xy(x + 3τ),

λ(x±, τ ) = P R
stac|xy(x ± 1 + 3τ),

λ̃(x, τ ) = P R
stac|xy(x + 3τ)

P R
stac|xx(x ± 1 + 3τ)

P R
stac|x(x ± 1 + 3τ)

,

λ̃(x±, τ ) = P R
stac|xy(x ± 1 + 3τ)

P R
stac|x±1x±1(x ± 1 + 3τ)

P R
stac|x±1(x ± 1 + 3τ)

.

(19)
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Fig. 1 Efficiency of the
reversible ratchet as found by
numerical simulations (◦), and
the three versions of the
mean-field approximation, MF1
(dotted line), MF2 (dashed line)
and MF3 (solid line). The
quarter-period is t = 16, particle
density is ρ = 0.3, temperature
T = 30 and external load F = 0.1

Similarly, for the calculation of the particle probability in presence of two extra particles,
i.e. P R

stac|yz, we use

λ(x, τ ) = P R
stac|yz(x + 3τ),

λ(x±, τ ) = P R
stac|yz(x ± 1 + 3τ),

λ̃(x, τ ) = P R
stac|yz(x + 3τ)

P R
stac|xx(x ± 1 + 3τ)

P R
stac|x(x ± 1 + 3τ)

,

λ̃(x±, τ ) = P R
stac|yz(x ± 1 + 3τ)

P R
stac|x±1x±1(x ± 1 + 3τ)

P R
stac|x±1(x ± 1 + 3τ)

.

(20)

This is the ultimate of the approximations used here and we denote it by acronym MF3.

3.4 Comparison

We can compare the three approximations with the results of the numerical simulation in a
typical situation shown in Fig. 1. MF1 is clearly the worst one. However, in the limit of very
weak interaction, g → 0, all three approximations seem to reproduce exactly the derivative
limg→0

dη

dg
. So, the bare existence of the effect of efficiency increase is reproduced in all the

approximations tried here, including the simplest MF1.
The second approximation, MF2, grasps also the location of the maximum of the effi-

ciency, but the value at the maximum does not agree quantitatively very well. On the other
hand, MF3 agrees also quantitatively well with the location and height of the maximum and
starts to deviate markedly from the simulation results only for interactions larger than about
g � 0.3. Still, we checked that qualitatively the features of the system are reproduced by
the approximation MF3 even for very strong repulsion, up to the regime where the limit
g → ∞ is effectively reached. Therefore, in the rest of the paper we shall use solely the
approximation MF3.

4 Efficiency and Current

4.1 Dependence on the Driving Speed

The behaviour of the motors depends on how fast the external potential changes, i.e. on the
quarter-period t . When it increases, the average driving weakens and the current diminishes.
At the same time, the process approaches the adiabatic limit, which should imply larger



944 F. Slanina

Fig. 2 Dependence of the current (a) and efficiency (b) on the quarter-period. The density is ρ = 0.5, tem-
perature T = 30, interaction g = 0.1. The load is F = 0 (•), F = 0.1 (�), F = 0.2 (�), F = 0.3 (◦),
F = 0.35 (�), and F = 0.4 (
)

Fig. 3 Dependence of the current (a) and efficiency (b) on interaction strength, for several densities. The
quarter-period is t = 16, temperature T = 10, load F = 0.1, and density (from top-right to bottom-left in the
panel (a), from bottom to top in the panel (b)) ρ = 0.1 (solid line), 0.2 (dashed), 0.3 (solid), 0.4 (dashed),
0.5 (solid)

efficiency. We can see in Fig. 2 that this expectation is exactly fulfilled in our model of
interacting motors. The current diminishes but efficiency grows when the dynamics of the
external potential is slowed down. At certain value of the load, the sign of the current re-
verses and therefore also the efficiency becomes negative. So, at finite load, the efficiency
develops a maximum at finite value of t .

4.2 Enhancement of Efficiency

The main result concerns the dependence of the efficiency on interaction strength. To see
that, we show in Fig. 3 both current and efficiency as functions of the interaction parame-
ter g. There is a pronounced maximum of efficiency for finite value of the interaction, while
the current behaves differently. When the interaction is increased, the current first stays
practically constant and about the same value of the interaction, where the maximum of the
efficiency occurs, the current starts decreasing rather sharply. We show in Fig. 5a that the
presence of the maximum in efficiency is combination of two effects. The first is the initial
plateau of current as function of g, the second is the decrease in the input energy per unit
time Ein. This means that moderately strong repulsive interaction induces collective effects,
which results in larger energetic efficiency of the motors.
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The increase of the efficiency is larger for larger densities, as seen again in Fig. 3. This
agrees with the results of numerical simulations presented in [60]. Note that the naive ap-
proximation MF1 does not possess this feature, as all quantities in this approximation de-
pend only on the product gρ and all curves in Fig. 3 would collapse into one if plotted as
functions of gρ.

4.3 At Strong Interaction

Although the mean-field approximation gives only qualitatively correct results if the inter-
action is stronger than about g � 0.3, we can still obtain useful qualitative results. In Fig. 4a
we show the efficiency as a function of g for several values of the external load F . For some
F (in our figure it occurs for F = 0.34), a double current reversal can be observed. When
the interaction is small, the current (i.e. also the efficiency) is positive. When we increase the
interaction beyond certain limit, the orientation of the current reverses, which is manifested
by efficiency changing sign. But if we further increase the interaction strength, the current
reverses again and approaches a positive limit for g above about g � 2. This limit can be
considered as the value corresponding to the exclusion process limit g → ∞.

In Fig. 4b we plot the total current Jtot = ρJ in this exclusion limit as a function of
density. It is well known that in the ASEP model, the mean-field result for this current
Jtot = ρ(1 − ρ) is exact. It means, for example, that the maximum is reached at density 1/2.
Fig. 4b shows that the reversible ratchet we are studying here behaves quite differently. The
maximum is at much lower densities and, most importantly, the current reversal phenom-
enon, discussed already in the previous paragraph, leads to negative current for densities
above certain critical value ρc < 1. In our case, the current changes sign about ρc � 0.34.
This fact makes the ratchet model with exclusion interaction substantially different from the
ASEP model.

Fig. 4 (a), dependence of the efficiency on interaction up to effectively infinite interaction strengths. The
density is ρ = 0.1, temperature T = 30, quarter-period t = 16, and load F = 0.02 (dotted line), F = 0.06
(dashed), 0.14 (solid), 0.28 (dot-dashed) and 0.34 (dot-dot-dashed). (b) Dependence of the total particle
current on the density, for temperature T = 30, quarter-period t = 16, zero load and interaction g = 3 (i.e.
effectively infinite)
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5 Work Fluctuations

5.1 Magnitude

The work performed by a single motor particle within given time interval 	τ is proportional
to the displacement 	x of the particle during that time. The work is a random variable
and we can study its fluctuations through the probability distribution of the displacements
P (	x). (We drop the dependence on the time 	τ from the notation, as it will be clear
enough from the context.) The immediate motivation for such study is the question, whether
the increase of efficiency of the motor is connected to suppression of fluctuations, as it would
be in the case of traditional heat engines.

We show in Fig. 5b the distribution of distances travelled by the particle during relatively
long time, τ = 1000t , i.e. 250 periods of the external driving potential. We can see that
the distribution is not Gaussian. First, it is composed of two separate branches, depending
on the congruence class with respect to spatial periodicity of the external potential. The
higher branch corresponds to 	x ≡ 0 mod 3, the lower one to all other 	x. Therefore, it is
significantly more probable that after integer number of periods the particle ends in spatially
equivalent position than elsewhere.

But even if we take both branches separately, they resemble Gaussians only in the cen-
tre of the distribution. The tails are clearly skewed, favouring the backward steps over the
forward ones.

However, the most interesting observation comes from the comparison of the distribution
without interaction, g = 0, and with interaction, g = 0.12, where all other parameters are
equal. We checked that of the two, the interacting case exhibits enhanced efficiency. Looking
at Fig. 5b we can see that the width of the distribution is larger in the interacting case, so the
work fluctuations are bigger, rather than smaller, in the more efficient state. We have already
remarked that the increase of efficiency is accompanied by decrease of energy input, as
seen in Fig. 5a. Hence, from Figs. 5a, b combined we conclude that the effect of enhanced
efficiency has energetic, rather than entropic origin. This means that the efficiency issue in
Brownian motors is distinct from the situation in equilibrium thermal engines.

Fig. 5 Source of the increase of the efficiency. (a) Dependence of current (dashed line), efficiency (solid
line) and input energy (dotted line) on interaction strength. The density is ρ = 0.5, temperature T = 10,
quarter-period t = 16, load F = 0.1. (b) Show the distribution of displacement after time 	τ = 1000t , for
t = 16, T = 30, ρ = 0.5, F = 0.1 and interaction g = 0 (�) and g = 0.12 (◦). The distributions are plotted
relative to the position of the maximum 	x0
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Fig. 6 (a) Large deviation function for the particle displacement. The time distances are, from the left to the
right, 	τ = 40t (line), 100t (�), 400t (◦). (b) Odd part of the large deviation function, for time distances
	τ = 40t (�), 100t (�), 400t (◦). In both panels, the parameters are ρ = 0.5, T = 30, and t = 16 g = 0.1
and F = 0.4

5.2 Large Deviations and Symmetry

Gaussian or not, the distribution of displacements P (	x) is expected to converge, when
appropriately scaled, to a function which describes large deviations from the average value

l(ξ) = lim
	τ→∞

1

	τ
lnP (ξ	τ) (21)

where ξ = 	x/	τ . We can see in Fig. 6a that limit as found numerically within our mean-
field approximation. We can see that the function is indeed very far from a Gaussian, re-
flecting the far-from-equilibrium nature of the ratchet transport. The backward skew is very
pronounced.

In the last decade, there was a surge of interest in fluctuation symmetries. In the non-
equilibrium systems with time-independent driving, the entropy production satisfies a sim-
ple but highly non-trivial fluctuation theorem (FT) [63–65]. Formulated in words, it states
that the odd part of the large deviation function for entropy production is a linear function.
There are cases, when the entropy production is proportional to the current, where FT holds
also directly for the large deviations of the displacement [66–68]. Essentially these are the
cases where particles are allowed to hop only to the nearest-neighbour positions on a one-
dimensional lattice. We were interested how far the ratchet model investigated here is from
such situation, so we plotted in Fig. 6b separately the odd part of the large deviation func-
tion. As we can see, it is not linear. It is no surprise, in fact, as the driving in the ratchet is
time-dependent. This could be given a simple interpretation, that the current is not propor-
tional to the entropy production, because at different times a single particle hopping bears
different entropy change. One could proceed by defining the ensemble of currents, one for
each instant within the time-period separately. Then, one would expect that the FT would
hold for inversion of all these current simultaneously, in the spirit of [69], although it could
well be that the interaction spoils this property. Alas, such study would be impractical in our
case, because the number of currents would be too large. In fact, we would need to work
with joint probability distribution of 4t , i.e. in our calculations typically 64, variables.
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6 Conclusions

We investigated the applicability of several mean-field approximation schemes for a model
of interacting Brownian motors. We selected the method based on the assumption of modi-
fied Poisson distribution for the number of particles simultaneously present at one site. The
method was shown to give quantitatively reasonable agreement for interaction strengths up
to about g � 0.3. Beyond that limit the behaviour still remains qualitatively valid. We in-
vestigated the effect of the enhancement of the efficiency of the motors due to interactions.
Calculating the energetic balance and work fluctuations we concluded that the effect of en-
hanced efficiency is caused entirely by the lowered energy input and not by the effect of
lower fluctuations. Indeed, fluctuations are increased, rather than decreased, by the interac-
tions. This is in contrast with the standard situation found in equilibrium engines.

We calculated also the properties of the model for strong interaction, where it approaches
the hard-core repulsion. The efficiency and current approaches a non-zero limit for g → ∞
(actually the limit value is reached already at g � 3). The current-density diagram at such
large interaction exhibits significantly different behaviour than the ASEP model, showing
that the results for ASEP cannot be directly translated into the properties of ratchets. Most
notable difference is the current reversal effect, which implies that not only the absolute size,
but also the orientation of the current depends on the interaction strength and on the density.

We also calculated the large deviation function, which is far from Gaussian, manifest-
ing the far-from-equilibrium nature of the particle transport. The question of fluctuations
symmetries of the ratchet current in this type of molecular motor remains unclear. There
are works suggesting the validity of the fluctuation theorem in some ratchets, if the time-
dependent driving is periodic and obeys time-reflection symmetry at least at one point within
the period [69–74]. Our ratchet does not possess this property. We showed that the displace-
ment (i.e. current) fluctuations do not obey the fluctuation theorem, but proper analysis of
this question requires further detailed study.

The symmetry of the ratchet current was investigated relatively recently in [75], but our
ratchet differs from the types investigated there by seemingly minor point that the ratchet
potential can be in more than two states. Therefore, the ratchet symmetry operation is not a
simple reflection as in [75] and the results presented there cannot be easily translated into
our case.
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